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Abstract
We are developing corpus-based techniques for iden-
tifying semantic relations at an intermediate level of
description (more specific than those used in case
frames, but more general than those used in tra-
ditional knowledge representation systems). In this
paper we describe a classification algorithm for iden-
tifying relationships between two-word noun com-
pounds. We find that a very simple approach using
a machine learning algorithm and a domain-specific
lexical hierarchy successfully generalizes from train-
ing instances, performing better on previously un-
seen words than a baseline consisting of training on
the words themselves.

1 Introduction
We are exploring empirical methods of determin-
ing semantic relationships between constituents in
natural language. Our current project focuses on
biomedical text, both because it poses interesting
challenges, and because it should be possible to make
inferences about propositions that hold between sci-
entific concepts within biomedical texts (Swanson
and Smalheiser, 1994).
One of the important challenges of biomedical

text, along with most other technical text, is the
proliferation of noun compounds. A typical article
title is shown below; it consists a cascade of four
noun phrases linked by prepositions:

Open-labeled long-term study of the effi-
cacy, safety, and tolerability of subcuta-
neous sumatriptan in acute migraine treat-
ment.

The real concern in analyzing such a title is in de-
termining the relationships that hold between differ-
ent concepts, rather than on finding the appropriate
attachments (which is especially difficult given the
lack of a verb). And before we tackle the prepo-
sitional phrase attachment problem, we must find
a way to analyze the meanings of the noun com-
pounds.
Our goal is to extract propositional information

from text, and as a step towards this goal, we clas-

sify constituents according to which semantic rela-
tionships hold between them. For example, we want
to characterize the treatment-for-disease relation-
ship between the words of migraine treatment ver-
sus the method-of-treatment relationship between
the words of aerosol treatment. These relations are
intended to be combined to produce larger proposi-
tions that can then be used in a variety of interpreta-
tion paradigms, such as abductive reasoning (Hobbs
et al., 1993) or inductive logic programming (Ng and
Zelle, 1997).
Note that because we are concerned with the se-

mantic relations that hold between the concepts, as
opposed to the more standard, syntax-driven com-
putational goal of determining left versus right as-
sociation, this has the fortuitous effect of changing
the problem into one of classification, amenable to
standard machine learning classification techniques.
We have found that we can use such algorithms to

classify relationships between two-word noun com-
pounds with a surprising degree of accuracy. A
one-out-of-eighteen classification using a neural net
achieves accuracies as high as 62%. By taking ad-
vantage of lexical ontologies, we achieve strong re-
sults on noun compounds for which neither word is
present in the training set. Thus, we think this is a
promising approach for a variety of semantic label-
ing tasks.
The reminder of this paper is organized as follows:

Section 2 describes related work, Section 3 describes
the semantic relations and how they were chosen,
and Section 4 describes the data collection and on-
tologies. In Section 5 we describe the method for
automatically assigning semantic relations to noun
compounds, and report the results of experiments
using this method. Section 6 concludes the paper
and discusses future work.

2 Related Work

Several approaches have been proposed for empiri-
cal noun compound interpretation. Lauer and Dras
(1994) point out that there are three components to
the problem: identification of the compound from
within the text, syntactic analysis of the compound



(left versus right association), and the interpreta-
tion of the underlying semantics. Several researchers
have tackled the syntactic analysis (Lauer, 1995;
Pustejovsky et al., 1993; Liberman and Sproat,
1992), usually using a variation of the idea of find-
ing the subconstituents elsewhere in the corpus and
using those to predict how the larger compounds are
structured.
We are interested in the third task, interpretation

of the underlying semantics. Most related work re-
lies on hand-written rules of one kind or another.
Finin (1980) examines the problem of noun com-
pound interpretation in detail, and constructs a
complex set of rules. Vanderwende (1994) uses a so-
phisticated system to extract semantic information
automatically from an on-line dictionary, and then
manipulates a set of hand-written rules with hand-
assigned weights to create an interpretation. Rind-
flesch et al. (2000) use hand-coded rule based sys-
tems to extract the factual assertions from biomed-
ical text. Lapata (2000) classifies nominalizations
according to whether the modifier is the subject or
the object of the underlying verb expressed by the
head noun.1

In the related sub-area of information extraction
(Cardie, 1997; Riloff, 1996), the main goal is to find
every instance of particular entities or events of in-
terest. These systems use empirical techniques to
learn which terms signal entities of interest, in order
to fill in pre-defined templates. Our goals are more
general than those of information extraction, and
so this work should be helpful for that task. How-
ever, our approach will not solve issues surrounding
previously unseen proper nouns, which are often im-
portant for information extraction tasks.
There have been several efforts to incorporate lex-

ical hierarchies into statistical processing, primar-
ily for the problem of prepositional phrase (PP)
attachment. The current standard formulation is:
given a verb followed by a noun and a prepositional
phrase, represented by the tuple v, n1, p, n2, deter-
mine which of v or n1 the PP consisting of p and
n2 attaches to, or is most closely associated with.
Because the data is sparse, empirical methods that
train on word occurrences alone (Hindle and Rooth,
1993) have been supplanted by algorithms that gen-
eralize one or both of the nouns according to class-
membership measures (Resnik, 1993; Resnik and
Hearst, 1993; Brill and Resnik, 1994; Li and Abe,
1998), but the statistics are computed for the par-
ticular preposition and verb.
It is not clear how to use the results of such anal-

ysis after they are found; the semantics of the rela-

1Nominalizations are compounds whose head noun is a
nominalized verb and whose modifier is either the subject or
the object of the verb. We do not distinguish the NCs on the
basis of their formation.

tionship between the terms must still be determined.
In our framework we would cast this problem as
finding the relationship R(p, n2) that best character-
izes the preposition and the NP that follows it, and
then seeing if the categorization algorithm deter-
mines their exists any relationship R′(n1, R(p, n2))
or R′(v, R(p, n2)).
The algorithms used in the related work reflect the

fact that they condition probabilities on a particular
verb and noun. Resnik (1993; 1995) use classes in
Wordnet (Fellbaum, 1998) and a measure of concep-
tual association to generalize over the nouns. Brill
and Resnik (1994) use Brill’s transformation-based
algorithm along with simple counts within a lexi-
cal hierarchy in order to generalize over individual
words. Li and Abe (1998) use a minimum descrip-
tion length-based algorithm to find an optimal tree
cut over WordNet for each classification problem,
finding improvements over both lexical association
(Hindle and Rooth, 1993) and conceptual associa-
tion, and equaling the transformation-based results.
Our approach differs from these in that we are us-
ing machine learning techniques to determine which
level of the lexical hierarchy is appropriate for gen-
eralizing across nouns.

3 Noun Compound Relations

In this work we aim for a representation that is in-
termediate in generality between standard case roles
(such as Agent, Patient, Topic, Instrument), and the
specificity required for information extraction. We
have created a set of relations that are sufficiently
general to cover a significant number of noun com-
pounds, but that can be domain specific enough to
be useful in analysis. We want to support relation-
ships between entities that are shown to be impor-
tant in cognitive linguistics, in particular we intend
to support the kinds of inferences that arise from
Talmy’s force dynamics (Talmy, 1985). It has been
shown that relations of this kind can be combined in
order to determine the “directionality” of a sentence
(e.g., whether or not a politician is in favor of, or op-
posed to, a proposal) (Hearst, 1990). In the medical
domain this translates to, for example, mapping a
sentence into a representation showing that a chem-
ical removes an entity that is blocking the passage
of a fluid through a channel.
The problem remains of determining what the ap-

propriate kinds of relations are. In theoretical lin-
guistics, there are contradictory views regarding the
semantic properties of noun compounds (NCs). Levi
(1978) argues that there exists a small set of se-
mantic relationships that NCs may imply. Downing
(1977) argues that the semantics of NCs cannot be
exhausted by any finite listing of relationships. Be-
tween these two extremes lies Warren’s (1978) tax-
onomy of six major semantic relations organized into



a hierarchical structure.
We have identified the 38 relations shown in Ta-

ble 1. We tried to produce relations that correspond
to the linguistic theories such as those of Levi and
Warren, but in many cases these are inappropriate.
Levi’s classes are too general for our purposes; for
example, she collapses the “location” and “time”
relationships into one single class “In” and there-
fore field mouse and autumnal rain belong to the
same class. Warren’s classification schema is much
more detailed, and there is some overlap between
the top levels of Warren’s hierarchy and our set
of relations. For example, our “Cause (2-1)” for
flu virus corresponds to her “Causer-Result” of hay
fever, and our “Person Afflicted” (migraine patient)
can be thought as Warren’s “Belonging-Possessor”
of gunman. Warren differentiates some classes also
on the basis of the semantics of the constituents,
so that, for example, the “Time” relationship is di-
vided up into “Time-Animate Entity” of weekend
guests and “Time-Inanimate Entity” of Sunday pa-
per. Our classification is based on the kind of re-
lationships that hold between the constituent nouns
rather than on the semantics of the head nouns.
For the automatic classification task, we used only

the 18 relations (indicated in bold in Table 1) for
which an adequate number of examples were found
in the current collection. Many NCs were ambigu-
ous, in that they could be described by more than
one semantic relationship. In these cases, we sim-
ply multi-labeled them: for example, cell growth is
both “Activity” and “Change”, tumor regression is
“Ending/reduction” and “Change” and bladder dys-
function is “Location” and “Defect”. Our approach
handles this kind of multi-labeled classification.
Two relation types are especially problematic.

Some compounds are non-compositional or lexical-
ized, such as vitamin k and e2 protein; others defy
classification because the nouns are subtypes of one
another. This group includes migraine headache,
guinea pig, and hbv carrier. We placed all these NCs
in a catch-all category. We also included a “wrong”
category containing word pairs that were incorrectly
labeled as NCs.2

The relations were found by iterative refinement
based on looking at 2245 extracted compounds (de-
scribed in the next section) and finding commonal-
ities among them. Labeling was done by the au-
thors of this paper and a biology student; the NCs
were classified out of context. We expect to con-
tinue development and refinement of these relation-
ship types, based on what ends up clearly being use-

2The percentage of the word pairs extracted that were not
true NCs was about 6%; some examples are: treat migraine,
ten patient, headache more. We do not know, however, how
many NCs we missed. The errors occurred when the wrong
label was assigned by the tagger (see Section 4).

ful “downstream” in the analysis.
The end goal is to combine these relationships in

NCs with more that two constituent nouns, like in
the example intranasal migraine treatment of Sec-
tion 1.

4 Collection and Lexical Resources

To create a collection of noun compounds, we per-
formed searches from MedLine, which contains ref-
erences and abstracts from 4300 biomedical journals.
We used several query terms, intended to span across
different subfields. We retained only the titles and
the abstracts of the retrieved documents. On these
titles and abstracts we ran a part-of-speech tagger
(Cutting et al., 1991) and a program that extracts
only sequences of units tagged as nouns. We ex-
tracted NCs with up to 6 constituents, but for this
paper we consider only NCs with 2 constituents.
The Unified Medical Language System (UMLS)

is a biomedical lexical resource produced and
maintained by the National Library of Medicine
(Humphreys et al., 1998). We use the MetaThe-
saurus component to map lexical items into unique
concept IDs (CUIs).3 The UMLS also has a map-
ping from these CUIs into the MeSH lexical hier-
archy (Lowe and Barnett, 1994); we mapped the
CUIs into MeSH terms. There are about 19,000
unique main terms in MeSH, as well as additional
modifiers. There are 15 main subhierarchies (trees)
in MeSH, each corresponding to a major branch
of medical ontology. For example, tree A cor-
responds to Anatomy, tree B to Organisms, and
so on. The longer the name of the MeSH term,
the longer the path from the root and the more
precise the description. For example migraine is
C10.228.140.546.800.525, that is, C (a disease), C10
(Nervous System Diseases), C10.228 (Central Ner-
vous System Diseases) and so on.
We use the MeSH hierarchy for generalization

across classes of nouns; we use it instead of the other
resources in the UMLS primarily because of MeSH’s
hierarchical structure. For these experiments, we
considered only those noun compounds for which
both nouns can be mapped into MeSH terms, re-
sulting in a total of 2245 NCs.

5 Method and Results

Because we have defined noun compound relation
determination as a classification problem, we can
make use of standard classification algorithms. In
particular, we used neural networks to classify across
all relations simultaneously.

3In some cases a word maps to more than one CUI; for the
work reported here we arbitrarily chose the first mapping in
all cases. In future work we will explore how to make use of
all of the mapped terms.



Name N Examples
Wrong parse (1) 109 exhibit asthma, ten drugs, measure headache

Subtype (4) 393 headaches migraine, fungus candida, hbv carrier,

giant cell, mexico city, t1 tumour, ht1 receptor

Activity/Physical process (5) 59 bile delivery, virus reproduction, bile drainage,

headache activity, bowel function, tb transmission

Ending/reduction 8 migraine relief, headache resolution

Beginning of activity 2 headache induction, headache onset

Change 26 papilloma growth, headache transformation,

disease development, tissue reinforcement

Produces (on a genetic level) (7) 47 polyomavirus genome, actin mrna, cmv dna, protein gene

Cause (1-2) (20) 116 asthma hospitalizations, aids death, automobile accident

heat shock, university fatigue, food infection

Cause (2-1) 18 flu virus, diarrhoea virus, influenza infection

Characteristic (8) 33 receptor hypersensitivity, cell immunity,

drug toxicity, gene polymorphism, drug susceptibility

Physical property 9 blood pressure, artery diameter, water solubility

Defect (27) 52 hormone deficiency, csf fistulas, gene mutation

Physical Make Up 6 blood plasma, bile vomit

Person afflicted (15) 55 aids patient, bmt children, headache group, polio survivors

Demographic attributes 19 childhood migraine, infant colic, women migraineur

Person/center who treats 20 headache specialist, headache center, diseases physicians,

asthma nurse, children hospital

Research on 11 asthma researchers, headache study, language research

Attribute of clinical study (18) 77 headache parameter, attack study, headache interview,

biology analyses, biology laboratory, influenza epidemiology

Procedure (36) 60 tumor marker, genotype diagnosis, blood culture,

brain biopsy, tissue pathology

Frequency/time of (2-1) (22) 25 headache interval, attack frequency,

football season, headache phase, influenza season

Time of (1-2) 4 morning headache, hour headache, weekend migraine

Measure of (23) 54 relief rate, asthma mortality, asthma morbidity,

cell population, hospital survival

Standard 5 headache criteria, society standard

Instrument (1-2) (33) 121 aciclovir therapy, chloroquine treatment,

laser irradiation, aerosol treatment

Instrument (2-1) 8 vaccine antigen, biopsy needle, medicine ginseng

Instrument (1) 16 heroin use, internet use, drug utilization

Object (35) 30 bowel transplantation, kidney transplant, drug delivery

Misuse 11 drug abuse, acetaminophen overdose, ergotamine abuser

Subject 18 headache presentation, glucose metabolism, heat transfer

Purpose (14) 61 headache drugs, hiv medications, voice therapy,

influenza treatment, polio vaccine

Topic (40) 38 time visualization, headache questionnaire, tobacco history,

vaccination registries, health education, pharmacy database

Location (21) 145 brain artery, tract calculi, liver cell, hospital beds

Modal 14 emergency surgery, trauma method

Material (39) 28 formaldehyde vapor, aloe gel, gelatin powder, latex glove,

Bind 4 receptor ligand, carbohydrate ligand

Activator (1-2) 6 acetylcholine receptor, pain signals

Activator (2-1) 4 headache trigger, headache precipitant

Inhibitor 11 adrenoreceptor blockers, influenza prevention

Defect in Location (21 27) 157 lung abscess, artery aneurysm, brain disorder

Table 1: The semantic relations defined via iterative refinement over a set of noun compounds. The relations
shown in boldface are those used in the experiments reported on here. Relation ID numbers are shown in
parentheses by the relation names. The second column shows the number of labeled examples for each class;
the last row shows a class consisting of compounds that exhibit more than one relation. The notation (1-2)
and (2-1) indicates the directionality of the relations. For example, Cause (1-2) indicates that the first noun
causes the second, and Cause (2-1) indicates the converse.



flu vaccination
Model 2 D 4 G 3
Model 3 D 4 808 G 3 770
Model 4 D 4 808 54 G 3 770
Model 5 D 4 808 54 79 G 3 770 670
Model 6 D 4 808 54 79 429 G 3 770 670 310

Table 2: Different lengths of the MeSH descriptors
for the different models

Model Feature Vector
2 42
3 315
4 687
5 950
6 1111
Lexical 1184

Table 3: Length of the feature vectors for different
models.

We ran the experiments creating models that used
different levels of the MeSH hierarchy. For example,
for the NC flu vaccination, flu maps to the MeSH
term D4.808.54.79.429.154.349 and vaccination to
G3.770.670.310.890. Flu vaccination for Model 4
would be represented by a vector consisting of the
concatenation of the two descriptors showing only
the first four levels: D4.808.54.79 G3.770.670.310
(see Table 2). When a word maps to a general MeSH
term (like treatment, Y11) zeros are appended to the
end of the descriptor to stand in place of the missing
values (so, for example, treatment in Model 3 is Y
11 0, and in Model 4 is Y 11 0 0, etc.).
The numbers in the MeSH descriptors are cate-

gorical values; we represented them with indicator
variables. That is, for each variable we calculated
the number of possible categories c and then repre-
sented an observation of the variable as a sequence of
c binary variables in which one binary variable was
one and the remaining c − 1 binary variables were
zero.

We also used a representation in which the words
themselves were used as categorical input variables
(we call this representation “lexical”). For this col-
lection of NCs there were 1184 unique nouns and
therefore the feature vector for each noun had 1184
components. In Table 3 we report the length of the
feature vectors for one noun for each model. The en-
tire NC was described by concatenating the feature
vectors for the two nouns in sequence.
The NCs represented in this fashion were used as

input to a neural network. We used a feed-forward
network trained with conjugate gradient descent.

Model Acc1 Acc2 Acc3
Lexical: Log Reg 0.31 0.58 0.62

Lexical: NN 0.62 0.73 0.78
2 0.52 0.65 0.72
3 0.58 0.70 0.76
4 0.60 0.70 0.76
5 0.60 0.72 0.78
6 0.61 0.71 0.76

Table 4: Test accuracy for each model, where the model
number corresponds to the level of the MeSH hierarchy

used for classification. Lexical NN is Neural Network on

Lexical and Lexical: Log Reg is Logistic Regression on

NN. Acc1 refers to how often the correct relation is the

top-scoring relation, Acc2 refers to how often the correct

relation is one of the top two according to the neural net,

and so on. Guessing would yield a result of 0.077.

The network had one hidden layer, in which a hy-
perbolic tangent function was used, and an output
layer representing the 18 relations. A logistic sig-
moid function was used in the output layer to map
the outputs into the interval (0, 1).
The number of units of the output layer was the

number of relations (18) and therefore fixed. The
network was trained for several choices of numbers of
hidden units; we chose the best-performing networks
based on training set error for each of the models.
We subsequently tested these networks on held-out
testing data.
We compared the results with a baseline in which

logistic regression was used on the lexical features.
Given the indicator variable representation of these
features, this logistic regression essentially forms a
table of log-odds for each lexical item. We also com-
pared to a method in which the lexical indicator vari-
ables were used as input to a neural network. This
approach is of interest to see to what extent, if any,
the MeSH-based features affect performance. Note
also that this lexical neural-network approach is fea-
sible in this setting because the number of unique
words is limited (1184) – such an approach would
not scale to larger problems.
In Table 4 and in Figure 1 we report the results

from these experiments. Neural network using lex-
ical features only yields 62% accuracy on average
across all 18 relations. A neural net trained on
Model 6 using the MeSH terms to represent the
nouns yields an accuracy of 61% on average across
all 18 relations. Note that reasonable performance is
also obtained for Model 2, which is a much more gen-
eral representation. Table 4 shows that both meth-
ods achieve up to 78% accuracy at including the cor-
rect relation among the top three hypothesized.
Multi-class classification is a difficult problem

(Vapnik, 1998). In this problem, a baseline in which
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The dotted line at the bottom is the accuracy of guess-
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curacy of our representation, when only the maximum

output value from the network is considered. The solid

line with circles if the accuracy of getting the right an-

swer within the two largest output values from the neural
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are the corresponding performances of the neural net-

work on lexical inputs.

the algorithm guesses yields about 5% accuracy. We
see that our method is a significant improvement
over the tabular logistic-regression-based approach,
which yields an accuracy of only 31 percent. Addi-
tionally, despite the significant reduction in raw in-
formation content as compared to the lexical repre-
sentation, the MeSH-based neural network performs
as well as the lexical-based neural network. (And we
again stress that the lexical-based neural network is
not a viable option for larger domains.)
Figure 2 shows the results for each relation.

MeSH-based generalization does better on some re-
lations (for example 14 and 15) and Lexical on others
(7, 22). It turns out that the test set for relation-
ship 7 (“Produces on a genetic level”) is dominated
by NCs containing the words alleles and mrna and
that all the NCs in the training set containing these
words are assigned relation label 7. A similar situa-
tion is seen for relation 22, “Time(2-1)”. In the test
set examples the second noun is either recurrence,
season or time. In the training set, these nouns ap-
pear only in NCs that have been labeled as belonging
to relation 22.
On the other hand, if we look at relations 14 and

15, we find a wider range of words, and in some cases
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Figure 2: Accuracies for each class. The numbers at the
bottom refer to the class numbers in Table 1. Note the

very high accuracy for the “mixed” relationship 20-27

(last bar on the right).

the words in the test set are not present in the train-
ing set. In relationship 14 (“Purpose”), for example,
vaccine appears 6 times in the test set (e.g., varicella
vaccine). In the training set, NCs with vaccine in
it have also been classified as “Instrument” (anti-
gen vaccine, polysaccharide vaccine), as “Object”
(vaccine development), as “Subtype of” (opv vac-
cine) and as “Wrong” (vaccines using). Other words
in the test set for 14 are varicella which is present
in the trainig set only in varicella serology labeled
as “Attribute of clinical study”, drainage which is
in the training set only as “Location” (gallbladder
drainage and tract drainage) and “Activity” (bile
drainage). Other test set words such as immunisa-
tion and carcinogen do not appear in the training
set at all.
In other words, it seems that the MeSHk-based

categorization does better when generalization is re-
quired. Additionally, this data set is “dense” in the
sense that very few testing words are not present in
the training data. This is of course an unrealistic
situation and we wanted to test the robustness of
the method in a more realistic setting. The results
reported in Table 4 and in Figure 1 were obtained
splitting the data into 50% training and 50% testing
for each relation and we had a total of 855 training
points and 805 test points. Of these, only 75 ex-
amples in the testing set consisted of NCs in which
both words were not present in the training set.
We decided to test the robustness of the MeSH-

based model versus the lexical model in the case of
unseen words; we are also interested in seeing the
relative importance of the first versus the second
noun. Therefore, we split the data into 5% training
(73 data points) and 95% testing (1587 data points)



Model All test 1 2 3 4
Lexical: NN 0.23 0.54 0.14 0.33 0.08

2 0.44 0.62 0.25 0.53 0.38
3 0.41 0.62 0.18 0.47 0.35
4 0.42 0.58 0.26 0.39 0.38
5 0.46 0.64 0.28 0.54 0.40
6 0.44 0.64 0.25 0.50 0.39

Table 5: Test accuracy for the four sub-partitions of
the test set.

and partitioned the testing set into 4 subsets as fol-
lows (the numbers in parentheses are the numbers
of points for each case):

• Case 1: NCs for which the first noun was not
present in the training set (424)

• Case 2: NCs for which the second noun was not
present in the training set (252)

• Case 3: NCs for which both nouns were present
in the training set (101)

• Case 4: NCs for which both nouns were not
present in the training set (810).

Table 5 and Figures 3 and 4 present the accuracies
for these test set partitions. Figure 3 shows that
the MeSH-based models are more robust than the
lexical when the number of unseen words is high and
when the size of training set is (very) small. In this
more realistic situation, the MeSHmodels are able to
generalize over previously unseen words. For unseen
words, lexical reduces to guessing.4
Figure 4 shows the accuracy for the MeSH based-

model for the the four cases of Table 5. It is interest-
ing to note that the accuracy for Case 1 (first noun
not present in the training set) is much higher than
the accuracy for Case 2 (second noun not present in
the training set). This seems to indicate that the
second noun is more important for the classification
that the first one.

6 Conclusions
We have presented a simple approach to corpus-
based assignment of semantic relations for noun
compounds. The main idea is to define a set of rela-
tions that can hold between the terms and use stan-
dard machine learning techniques and a lexical hi-
erarchy to generalize from training instances to new
examples. The initial results are quite promising.
In this task of multi-class classification (with 18

classes) we achieved an accuracy of about 60%.
These results can be compared with Vanderwende

4Note that for unseen words, the baseline lexical-based
logistic regression approach, which essentially builds a tabular
representation of the log-odds for each class, also reduces to
random guessing.
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the four cases. All these curves refer to the case of get-

ting exactly the right answer. Note the difference in

performance between case 1 (first noun not present in

the training set) and case 2 (second noun not present in

training set).

(1994) who reports an accuracy of 52% with 13
classes and Lapata (2000) whose algorithm achieves
about 80% accuracy for a much simpler binary clas-
sification.
We have shown that a class-based representation

performes as well as a lexical-based model despite
the reduction of raw information content and de-



spite a somewhat errorful mapping from terms to
concepts. We have also shown that representing the
nouns of the compound by a very general represen-
tation (Model 2) achieves a reasonable performance
of aout 52% accuracy on average. This is particu-
larly important in the case of larger collections with
a much bigger number of unique words for which
the lexical-based model is not a viable option. Our
results seem to indicate that we do not lose much
in terms of accuracy using the more compact MeSH
representation.
We have also shown how MeSH-besed models out

perform a lexical-based approach when the num-
ber of training points is small and when the test
set consists of words unseen in the training data.
This indicates that the MeSH models can generalize
successfully over unseen words. Our approach han-
dles “mixed-class” relations naturally. For the mixed
class Defect in Location, the algorithm achieved an
accuracy around 95% for both “Defect” and “Loca-
tion” simultaneously. Our results also indicate that
the second noun (the head) is more important in
determining the relationships than the first one.
In future we plan to train the algorithm to allow

different levels for each noun in the compound. We
also plan to compare the results to the tree cut algo-
rithm reported in (Li and Abe, 1998), which allows
different levels to be identified for different subtrees.
We also plan to tackle the problem of noun com-
pounds containing more than two terms.
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